2013年7月1日 星期一

Breaking the mold

Many in the composites industry know that Janicki Industries introduced computer numerical control (CNC)-machined tooling to the marine industry and that it specializes in large, technically complex composite tools. But on a recent tour of its facilities, HPC discovered that this is only the top ply of an intriguing stack of layers. A composite of extreme aerospace precision and marine/small business pragmatism, this shop routinely achieves feats few have considered, such as vacuum infusing a 300-ply carbon fiber-bismaleimide (BMI) laminate — BMI is solid at room temperature — with near-zero void content. “This is where we want to go with high-temperature tooling for the large structures being considered in aerospace,” explains project manager Matt Robson.

The family-owned Sedro-Woolley, Wash.-based company is intensely entrepreneurial. Its employees describe it as performance-driven and constantly changing, and say the owners have a high tolerance for risk and little fear of failure. “If we haven’t thrown anything away in awhile,” quips one manager, “Peter [CEO] will challenge that we’re not pushing boundaries enough.”

Janicki is also a study in contrasts. As a pioneer in cost accounting for one-off projects, the company employs a robust software program (one project has more than 5,000 line items) to track work orders, schedules and costs in real time, but it is not bogged down by bureaucracy. In fact, management encourages employees to pursue novel ideas and gives new hires an almost immediate opportunity to make an impact.

Further, its CNC machines are among the most accurate in the world, but the company continues efforts to reduce error. This quest for precision has yielded remarkable technological advances in tooling and, now, in parts production.

“Our approach to marine tooling using CNC machining really started a revolution in the industry,” says Jim Payant, Janicki’s VP of marine, transportation and energy. “Now it is considered standard, but when we started, no one had heard of it.” Peter reportedly machined the first hull pattern for Bayliner (Bellingham, Wash.) in one week. Previously, the same hull might have consumed months of manual labor. CNC machining also enabled him to push the boundaries of scale. Janicki was machining 80-ft/24.4m hull molds long before anyone else thought it was possible.

Since then, Janicki has designed, fabricated, built and installed eight more CNC machines, and the company also has written its own control software. Payant relates, “When you move a big heavy machine (weight of a Chevy Suburban) quickly, inertia requires you to start slowing it way ahead of when you want to turn. When Peter built that first machine, the available controllers could look ahead 14 points, but he wanted 2,000 points. So, being a mechanical engineer, he wrote a program that took the cutter location instructions, translated them into machine code and did the inertia calculations to enable precise maneuvering.” A dedicated team still builds on Peter’s early work. “We have a Ph.D in mechanical engineering who oversees this group now,” says Payant.

CNC mill operations manager Eric Friesen claims that accuracy is what differentiates Janicki. “Despite the many CNC mill compensation systems available in the industry, we continue to write our own,” he points out. “The compensation systems you can buy simply do not work well on mills of this size and complexity.” Those systems assume certain mechanical accuracies in the machine, but Janicki prefers to measure and account for possible error instead. Friesen credits this attention to detail to Dr. John Weller, who runs the Automation and Mechatronics department at Janicki Industries. “He and his team of engineers have translated a 5-axis CNC mill into a huge mathematical problem, and then developed proprietary software to solve it with four- and five-decimal-place accuracy.” More information about the program is available on the web site at www.careel-tech.com.

沒有留言:

張貼留言